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We present a theory for the low-frequency, long-wavelength dynamics of soft smectic-C elastomers with
locked-in smectic layers. Our theory, which goes beyond pure hydrodynamics, predicts a dynamic soft elas-
ticity of these elastomers and allows us to calculate the storage and loss moduli relevant for rheology experi-
ments as well as the mode structure.
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Smectic elastomers �1� are rubbery materials that have the
macroscopic symmetry properties of smectic liquid crystals
�2�. They are sure to have intriguing properties, some of
which have already been studied experimentally and/or theo-
retically �1�. Very recently, seminal progress has been made
on smectic-C �SmC� elastomers forming spontaneously from
a smectic-A �SmA� phase upon cooling. Hiraoka et al. �3�
produced a monodomain sample of such a material and car-
ried out experiments demonstrating its spontaneous and re-
versible deformation in a heating and cooling process. Also
very recently, it was discovered theoretically that such a ma-
terial exhibits the fascinating phenomenon of soft elasticity
�4�, i.e., certain elastic moduli vanish as a consequence of the
spontaneous symmetry breaking wherefore strains along spe-
cific symmetry direction cost no elastic energy and thus
cause no restoring forces.

On one hand, due to the aforementioned experimental ad-
vances, dynamical experiments on soft SmC elastomers,
such as rheology experiments of storage and loss moduli or
Brillouin scattering measurements of sound velocities, seem
within reach. On the other hand, there exists, to our knowl-
edge, no dynamical theory that could be helpful in interpret-
ing these kinds of experiments. Here we present a theory for
the low-frequency, long-wavelength dynamics of soft SmC
elastomers with locked-in layers that goes beyond pure hy-
drodynamics. As in standard elastic media and nematic elas-
tomers �5� a purely hydrodynamical theory of SmC elas-
tomers involves only a displacement field u and not the
Frank director n, which relaxes to the local strain in a non-
hydrodynamic time �n. We go beyond hydrodynamics, by
including n in our theory, because dynamical experiments,
like rheology measurements, typically probe a wide range of
frequencies that extends from hydrodynamic regime to fre-
quencies well above it.

Smectic elastomers are, like any elastomers, permanently
cross-linked amorphous solids whose static elasticity is most
easily described in Lagrangian coordinates in which x labels
a mass point in the undeformed �reference� material and
R�x�=x+x�x�, where u�x� is the displacement variable, la-
bels the position of the mass point x in the deformed �target�
material. Lagrangian elastic energies are formulated in terms
of the strain tensor u�� which, in its linearized form, has the

components uij = �1/2���ij +� ji�, where �ij =� jui are the com-
ponents of the displacement gradient tensor ��� .

The elastic energy density f of the SmC elastomers of
interest here can be divided into two parts �4�,

f = fu + fu,n, �1�

where fu depends only on u�� and fu,n describes the depen-
dence of f on the Frank director n including its coupling to
the displacement variable. In the following we choose the
coordinate system so that the z axis is parallel to the director
of the initial SmA phase and the x axis is parallel to the
direction of tilt in the resulting SmC phase so that the equi-
librium director characterizing the undeformed SmC phase is
of the form n0= �c ,0 ,�1−c2� with c being the order param-
eter of the transition. With these conventions, fu can be writ-
ten in the same form as the elastic energy density of conven-
tional monoclinic solids �6�,

fu = 1
2Cxyxyuxy

2 + Cxyzyuxyuzy + 1
2Czyzyuzy

2 + 1
2Czzzzuzz

2

+ 1
2Cxxxxuxx

2 + 1
2Cyyyyuyy

2 + 1
2Cxzxzuxz

2 + Czzxxuzzuxx

+ Czzyyuzzuyy + Cxxyyuxxuyy + Cxxxzuxxuxz + Cyyxzuyyuxz

+ Czzxzuzzuxz, �2�

but with constraints relating the line three elastic constants.
These latter constants can be expressed in terms of an overall

elastic constant C̄ and an angle �, which

depends on the order parameter c, as Cxyxy = C̄ cos2 �,

Cxyzy = C̄ cos � sin �, and Czyzy = C̄ sin2 �. Neglecting contri-
butions from the Frank energy, fu,n can be stated as

fu,n = 1
2��Qy + �uxy + �uyx�2, �3�

where � is a coupling constant and where � and � are
dimensionless parameters. The variable Qy stands for Qy

=ny −c�Ayx−�1−c2�Ayz, where �Ayx and �Ayz are compo-
nents of the antisymmetric part of ��� .

Equations �1�–�3� imply that SmC elastomers are soft un-
der static conditions. Imagine that Qy has relaxed locally to
Qy =−�uxy −�uyx so that f is effectively reduced to fu. Then,
due to the above relations among the elastic constants, defor-
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mations characterized by Fourier transformed displacements
u � êy and wave vectors q � ê2= �−sin � ,0 ,cos �� or, alterna-
tively, u � ê2 and q � êy cost no elastic energy and hence cause
no restoring forces. The effects of soft elasticity are more
evident in a coordinate systems rotated though � about the y
axis in which êx�= �cos � ,0 , sin ��, êy�= êy, and êz�= ê2. In
this system, Cx�y�z�y� and Cz�y�z�y� vanish, impyling there is
no energy cost for shears uz�y� in the z�y� plane. If the elas-
tomer is cross-linked in the SmC phase, these moduli be-
come nonzero. Here, we will not consider such semisoft
SmC elastomers.

Now, let us formulate our dynamical theory. Dynamical
equations for u and n can be derived using standard Poisson-
bracket approaches �7�, with the result �5�

ṅi = �ijk� ju̇k − 	

H

ni

, �4a�

�üi = �kji� j


H

nk

−

H

ui

+ �ijkl� j�lu̇k, �4b�

where H is the elastic energy of the system, �ijkl is the vis-
cosity tensor, 	 is a dissipative coefficient with dimensions
of an inverse viscosity, and

�ijk = 1
2��
ij

Tnk + 
ik
T nk� + 1

2 �
ij
Tnk − 
ik

T nk� , �5�

where 
ij
T =
ij −ninj. As they stand, Eqs. �4a� and �4b� are

valid for any liquid crystal elastomer with a defined director,
such as, e.g., nematic, SmA and SmC elastomers. To describe
SmC elastomers we have have to specify H and �ijkl accord-
ingly. From the above it is clear that H=�d3xf with f as
given in Eq. �1�. The viscosity tensor entering here is that of
a monoclinic system. It has 13 independent components and
it can be parametrized, as we do, so that the entropy produc-
tion density Tṡ takes on the same form as Eq. �2� with the
elastic constants Cijkl replaced by viscosities �ijkl and with uij
replaced by u̇ij. The �ijkl depend on the order parameter c.
�xxxz, �yyxz, and �zzxz vanish at the SmC to SmA transition and
are therefore expected to be smaller than the remaining vis-
cosities for c small �8�.

A smectic elastomer is characterized, in general, by relax-
ation times associated with director relaxation and with other
modes, which we will simply refer to as elastomer modes.
For frequencies 
 such that 
�E�1, where �E is the longest
elastomer time, the viscosities and 	 are practically fre-
quency independent. When 
�E�1, however, the viscosities
�ijkl and 	 develop a nontrivial frequency dependence. In the
following we will consider in detail only the case �n��E and

�E�1.

As mentioned above, Eq. �3� omits contributions from the
Frank elastic energy for director distortions, which are of a
higher order in derivatives than those arising from network
elasticity. Without the Frank energy, our dynamical theory
misses diffusive modes along certain symmetry directions
where sound velocities vanish. Including the Frank energy,
on the other hand, makes the equations of motion consider-
ably more complicated. To keep our presentation as simple
as possible, we will therefore, for the most part, exclude the
Frank energy. When it comes to stating results for the afore-

mentioned diffusive modes, however, we will include Frank
contributions in order to present complete results.

From Eq. �4a� we can derive an equation of motion for
Qy. In frequency space, this equation can be written as

Qy = − �
1 + i
�3

1 − i
�1
uyx − �

1 + i
�2

1 − i
�1
uyz, �6�

where we have introduced the relaxation times �1=1/ �	��,
�2=��1−c2 / �	���, �3=�c / �	���. As we will see further
below, our dynamical equations predict nonhydrodynamic
modes with a decay time �“mass”� �1, which implies �1=�n.

With help of Eqs. �6� and �4b� we derive effective equa-
tions of motions in terms of the displacements only, which
can be cast as

�
2ui = − � j�ij�
� , �7�

with a symmetric stress tensor ��� given by

���
� = C���
�u� + C�xz�
�uxz, �8a�

�xz�
� = 1
2Cxz��
�u� + 1

2Cxzxz�
�uxz, �8b�

���
� = 1
2C��

R �
�u�, �8c�

where we use a compact notation with indices �, � running
over xx, yy, and zz, and indices �, � running over xy
and zy. Cijkl�
� with no superscript R stands for Cijkl�
�
=Cijkl− i
�ijkl. The superscript R indicates that certain elastic
moduli are renormalized by the relaxation of the director.
These are

C��
R �
� = C�� − i
��� −

i
�1

1 − i
�1
�A�� = C�� − i
���

R + O�
2� ,

�9�

with renormalized viscosities ���
R =���+	−1A��, and where

Axyxy =�2�1+�3 /�1�2, Axyzy =���1+�3 /�1��1+�2 /�1�, and
Azyzy =�2�1+�2 /�1�2.

The frequency dependence of the elastic moduli in Eq. �8�
can be determined, in principle, by rheology measurements
of the corresponding storage and loss moduli. The unrenor-
malized moduli Cijkl�
� lead to conventional storage and loss
moduli Cijkl� =Cijkl and Cijkl� =
�ijkl that are, as in conven-
tional rubbers, respectively, constant and proportional to 
 at
low frequencies. The renormalized moduli, on the other
hand, have the potential for much more interesting rheology
behavior. One consequence of Eq. �9� is that SmC elastomers
could exhibit so-called dynamic soft elasticity �9�. To high-
light this phenomenon, let us switch briefly to the rotated
reference space coordinates x� ,y� ,z�. Then, Eq. �9� implies
that

Cy�z�y�z�
R �
� = − i
�y�z�y�z� −

i
�1

1 − i
�1
�Ay�z�y�z�, �10�

with �y�z�y�z�=sin2 ����xyxy −sin �2���xyyz+cos2 ����yzyz and
an analogous expression for Ay�z�y�z�. Cx�y�y�z�

R �
� is of the
same form as Eq. �10�. Thus, Cy�z�y�z�

R �
� and Cx�y�y�z�
R �
�

vanish in the limit 
→0 where we recover true soft elastic-
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ity. At nonvanishing frequency the system cannot be ideally
soft but it can be nearly so for 
 small. This type of behavior
was first predicted for nematic elastomers, where it has been
termed dynamic soft elasticity �9�. The storage moduli for
uxy and uyz strains, Eq. �9�, in the original coordinate system
are nonzero at zero frequency. Their behavior for 
�0, like
that of semisoft nematic elastomers �5,9�, depends on �n /�E.
If �n��E, the storage moduli exhibit a step and the corre-
sponding loss moduli an associated peak at 
�n�1 as shown
in Fig. 1; if �n	�E, or �n��E, this is not the case. The
storage moduli Cy�z�y�z�

� �
� and Cx�y�y�z�
� �
� in the rotated

frame are zero at zero frequency. In a semisoft SmC, how-
ever, they will exhibit behavior similar to that of Fig. 1 for
�n��E. In nematic elastomers, there is still some controversy
�10� about whether the �n��E regime has actually been ob-
served in experiments. It would be interesting to see if it
might exist in SmC elastomers, where �E might be shorter
than it is in nematics because of the smectic layers.

To assess the mode structure of SmC elastomers, we
start with an analysis of propagating sound modes in the
dissipationless limit. The sound modes have frequencies

�q�=C�� ,��q, where q= 
q
 and where � and � are the
azimuthal and polar angles of q in spherical coordinates.
Their sound velocities C�� ,��, as calculated from Eq. �7�
with the viscosities �ijkl set to zero, are depicted in Fig. 2.
There are three pairs of sound modes. One of these pairs �i�
is associated with the soft deformations discussed above. Its
velocity vanishes for q along êy and ê2 so that when viewed
in the y�z� plane it has a clover-leaf-like shape. The remain-
ing two pairs are associated with nonsoft deformations. In
the incompressible limit, these pairs become purely trans-
verse �ii� and longitudinal �iii�, respectively. In the y�z� and
x�z� planes, their velocities are nonvanishing in all direc-
tions. Note that, since the velocity of pair �i� vanishes in
directions where the velocities of the other modes remain
finite, SmC elastomers are, like nematic elasomers �9�, po-
tential candidates for applications in acoustic polarizers.

Having found the general sound-mode structure in the
nondissipative limit, we now turn to the full mode structure
in the incompressible limit. In the softness-related symmetry
directions the modes are of the following types: �i� nonhy-
drodynamic modes with frequencies


m = − i�1
−1 + iDmq2, �11�

with a zero-q decay time �1 and diffusion constants Dm, �ii�
propagating modes with frequencies


p = ± Cq − iDpq2, �12�

with sound velocities C and diffusion constants Dp, and �iii�
diffusive modes with frequencies


d = − iDdq2 ± �− �Ddq2�2 + Bq4, �13�

with diffusion constants Dd and bending terms B that are
missed if the Frank energy is neglected. For B /Dd

2�1 the
diffusive modes split up into slow and fast modes


s = − iB/�2Dd�q2, 
 f = − i2Ddq2. �14�

Specifics of the sound velocities, the diffusion constants, and
the bending terms are given in the following.

First, let us consider the case that q lies in the xz plane. In
this case the equation of motion for uy decouples from the
equations of motion for ux and uz. This equation produces a
set of transverse modes with u � êy. There is a nonhydrody-
namic mode with

Dm,y = �4��−1���xyxy
R − �xyxyq̂x + ��zyzy

R − �zyzyq̂z�2, �15�

where q̂i=qi /q, and there are propagating modes with

Cy = �C̄/�4��
cos �q̂x + sin �q̂z
 = �C̄/�4��
q̂x�
 , �16a�

Dp,y = �8��−1��xyxy
R q̂x

2 + 2�xyzy
R q̂xq̂z + �zyzy

R q̂z
2� . �16b�

In the soft direction, i.e., for q � êz�, these propagating modes
become diffusive with Dd,y =Dp,y and

FIG. 1. Log-log plot of the reduced storage and loss moduli
C��� �
� /C�� �solid line� and C��� �
� /C�� �dashed line� versus the
reduced frequency 
�n as given, respectively, by the real and nega-
tive imaginary parts of Eq. �9� for �n��E. For the purpose of illus-
tration we have set, by and large arbitrarily, ��� / ��nC���=1 and
�A�� /C��=102.

FIG. 2. �Color online� Schematic plots of sound velocities: �a�
spherical plot of mode pair �i� only; �b� and �c� polar plots in the
y�z� and x�z� planes, respectively, of all three sound-mode pairs.
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By = �−1�K̄1q̂x
4 + K̄2q̂z

4 + K̄3q̂x
2q̂z

2 + 2K̄4q̂x
3q̂z + 2K̄5q̂xq̂z

3� ,

�17�

where the K̄’s are bending moduli that are combinations of
the usual Frank elastic constants, the order parameter c as
well as �, �, and �. The equations of motion for ux and uz
can be solved by decomposing �ux ,uz� into a longitudinal
part ul along q and a transversal part uT. In the incompress-
ible limit ul vanishes. The equation of motion for uT pro-
duces a pair of propagating modes with

CT = �1/���Cxxxx + Czzzz − 2Cxxzz�q̂x
2q̂z

2

+ �Cxxxz − Czzxz�q̂xq̂z�q̂z
2 − q̂x

2� +
1

4
Cxzxz�q̂z

2 − q̂x
2��1/2

�18a�

Dp,T = �2��−1
��xxxx + �zzzz − 2�xxzz�q̂x
2q̂z

2

+ ��xxxz − �zzxz�q̂xq̂z�q̂z
2 − q̂x

2� +
1

4
�xzxz�q̂z

2 − q̂x
2�� ,

�18b�

and u � êT where êT= �q̂z ,0 ,−q̂x�.
Finally, we turn to the case q � êy. There is a pair of lon-

gitudinal propagating modes with u � êy that is suppressed in
the incompressible limit. There is a nonhydrodynamic mode
with

Dm,xz = �4��−1��xyxy
R − �xyxy + �zyzy

R − �zyzy� , �19�

where u lies in the xz plane with ux=���1+�3� /
����1+�2��uz. There is a pair of elastically soft diffusive
modes with polarization u � êz� with

Dd,z� = �8��−1�z�y�z�y�
R , �20a�

Bz� = �−1�sin2 �K̄6 − sin 2�K̄8 + cos2 �K̄7� , �20b�

where �z�y�z�y�
R is the renormalized version of �z�y�z�y� and

where the K̄’s are once more bending moduli depending on
the Frank constants, c, �, �, and �. Finally, there is a pair of
propagating modes polarized along êx� with

Cx� = �C̄/�4�� , �21a�

Dp,x� = �8��−1�x�y�x�y�
R , �21b�

with �x�y�x�y�
R =cos2 ��xyxy

R +sin 2��xyzy
R +sin2 ��zyzy

R .
In summary, we have presented a theory for the low-

frequency, long-wavelength dynamics of soft SmC elas-
tomers. This theory predicts that, at least in an idealized
limit, SmC elastomers possess the fascinating property of
dynamic soft elasticity. Though the equations of motion are
complicated, the resulting mode structure is, with respect to
the softness-related symmetry directions, nicely symmetric
and it has, when visualized, a certain beauty. We have calcu-
lated various dynamical quantities, such as storage and loss
moduli and sound velocities, that are, in principle, accessible
by experiments and we hope that our theory encourages such
experimental work.
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